Common reducing subspace model and network alternation analysis
نویسندگان
چکیده
منابع مشابه
Reducing Network Overhead with Common Junction Methodology
In structured and unstructured Peer-to-Peer (P2P) systems, frequent joining and leaving of peer nodes causes topology mismatch between the P2P logical overlay network and the physical underlay network. This topology mismatch problem generates high volumes of redundant traffic in the network. This paper presents Common Junction Methodology (CJM) to reduce network overhead by optimize the overlay...
متن کاملA nonlinear model for common weights set identification in network Data Envelopment Analysis
In the Data Envelopment Analysis (DEA) the efficiency of the units can be obtained by identifying the degree of the importance of the criteria (inputs-outputs).In DEA basic models, challenges are zero and unequal weights of the criteria when decision- making units are evaluated. One of the strategies applied to deal with these problems is using common weights of the each input...
متن کاملanalysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولa nonlinear model for common weights set identification in network data envelopment analysis
in the data envelopment analysis (dea) the efficiency of the units can be obtained by identifying the degree of the importance of the criteria (inputs-outputs).in dea basic models, challenges are zero and unequal weights of the criteria when decision- making units are evaluated. one of the strategies applied to deal with these problems is using common weights of the each input...
متن کاملA common neural-network model for unsupervised exploratory data analysis and independent component analysis
This paper presents the derivation of an unsupervised learning algorithm, which enables the identification and visualization of latent structure within ensembles of high-dimensional data. This provides a linear projection of the data onto a lower dimensional subspace to identify the characteristic structure of the observations independent latent causes. The algorithm is shown to be a very promi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrics
سال: 2019
ISSN: 0006-341X,1541-0420
DOI: 10.1111/biom.13099